

Contenu de la présentation

Mise en contexte

Analyse des scénarios

Shaft generator

Panneaux solaires

Stockages de l'énergie

Gestion du projet

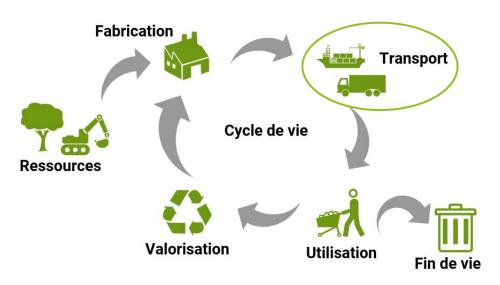
2

La mondialisation

- Échange de bien entre régions
- Sociétés multinationales
- Transport souvent fait via les voies maritimes.

- Fednav est le plus grand transporteur océanique de vrac au Canada
- Mandaté pour réduire les émissions de gaz à effet de serre au maximum tout en étant économique.

Pourquoi Fednav nous mandatent?

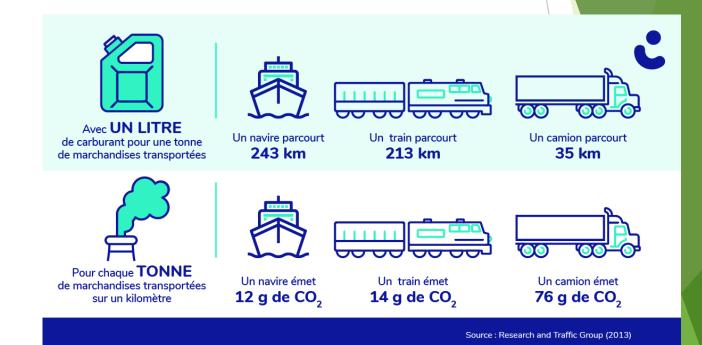


- Convention internationale pour la prévention de la pollution par les navires (MARPOL), le 2/11/74 à l'IMO.
- Annexe VI, pollution atmosphérique.
- Requis ↑ chaque année. ↓[CO2 par tonnes/miles]

Ils servent à quoi les bateaux

- Toute petite transaction fait partie d'un grand écosystème de transport donc les gens ignorent souvent l'existence.
- À l'échelle mondiale, 80 % du transport de marchandises se fait par voie maritime

Qu'est-ce qui pollue, lors du transport de marchandise



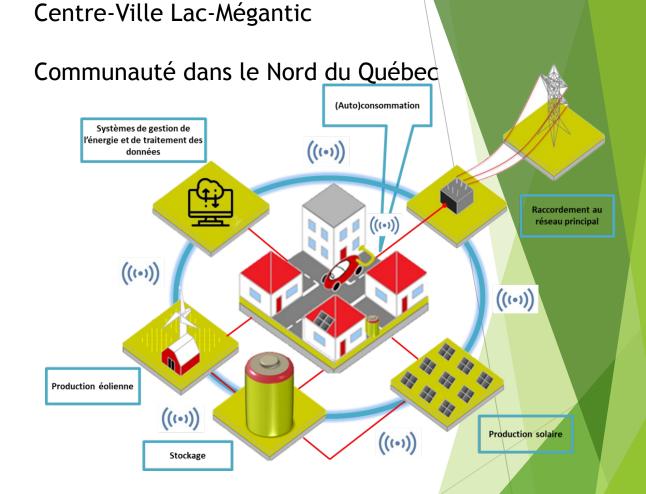
Génératrice | Alimentation auxiliaire

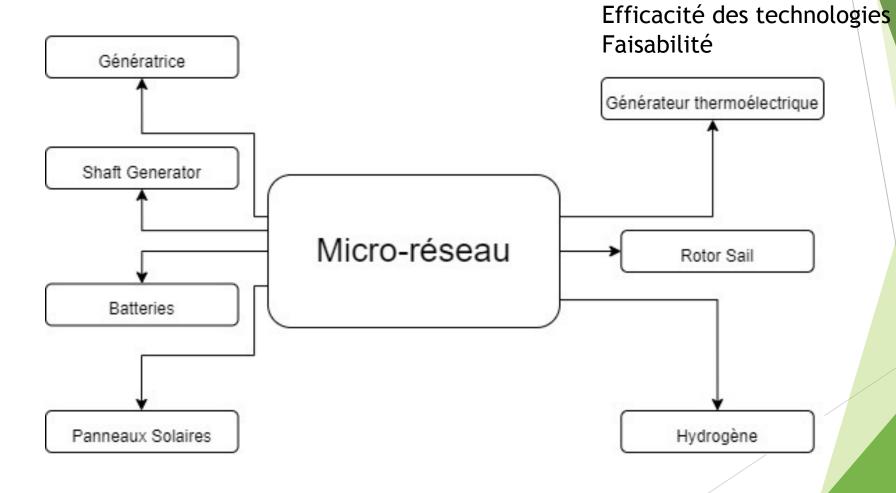
Si ça pollue autant, pourquoi on ne les éteints pas.

- En moyenne, déplacer une tonne de marchandises sur un kilomètre par bateau émet 12 grammes de CO₂ alors que par camion, c'est 76 grammes.
- Donc, pas le choix d'utiliser le transport par navire

Type de carburant	Densité massique (MJ/kg)	Densité volumique (MJ/L)
Gazole	45	30
Essence	48	40
Batterie Li-Ion- Polymère	0,8	1,6
Batterie Li-Ion	0,5	1,2
Batterie Fer-Ni	0,12	0,13
Batterie Plomb	0,1	0,1

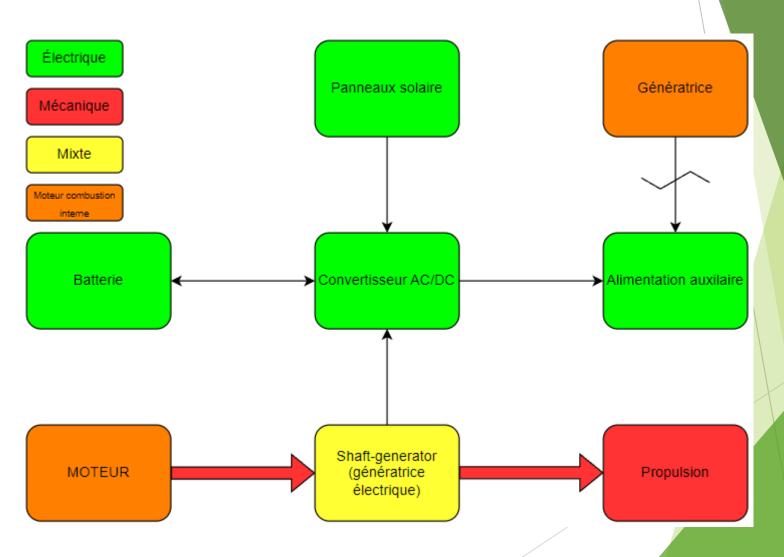
Poids [\$/kg]


↓ GES avec micro-réseau


 $https://controverses.minesparis.psl.eu/public/promo12/promo12_G21/www.controverses-minesparistech-10.fr/la-voiture-electrique-et-son-environnement/la-batterie/index.html$

Micro-réseau

- Diminuer la dépendance au réseau centralisé.
 - Lac-Mégantic
 - Panneaux solaires obligatoire sur les habitations en Californie
- Se desservir de grosses génératrices diesels
 - Communauté du Grand Nord du Québec
 - En lien avec notre projet VraquiUS 2.0
 - Diminuer la dépendance/consommation d'hydro carbure


Sélection des technologies

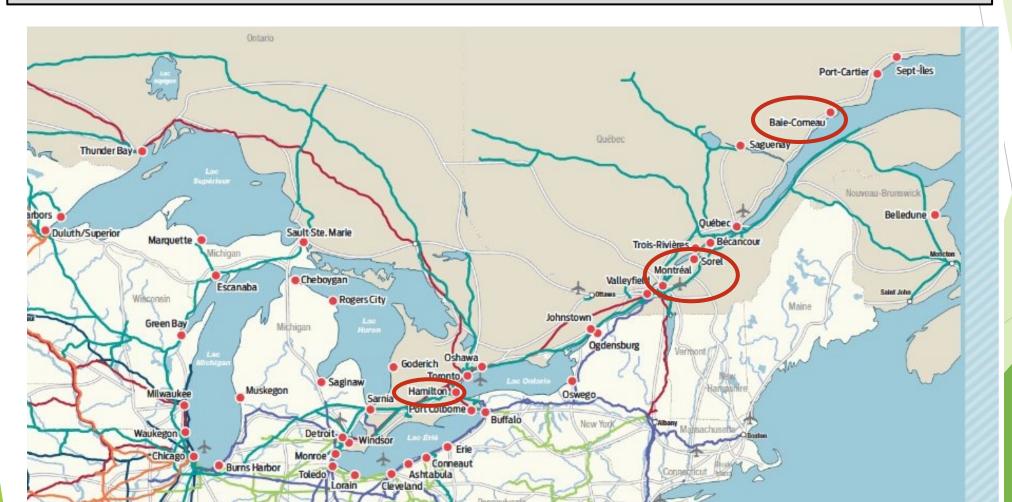
Espacement

Fonctionnement haut-niveau

Shaft generator : Utiliser le moteur dans une zone d'efficacité

Notre mandat

- Fournir un modèle de puissance en fonction de trajets maritimes
- Présenter plusieurs scénario (différentes technologies de production, gestion et stockage) en fonction de leurs coûts et réductions des GES

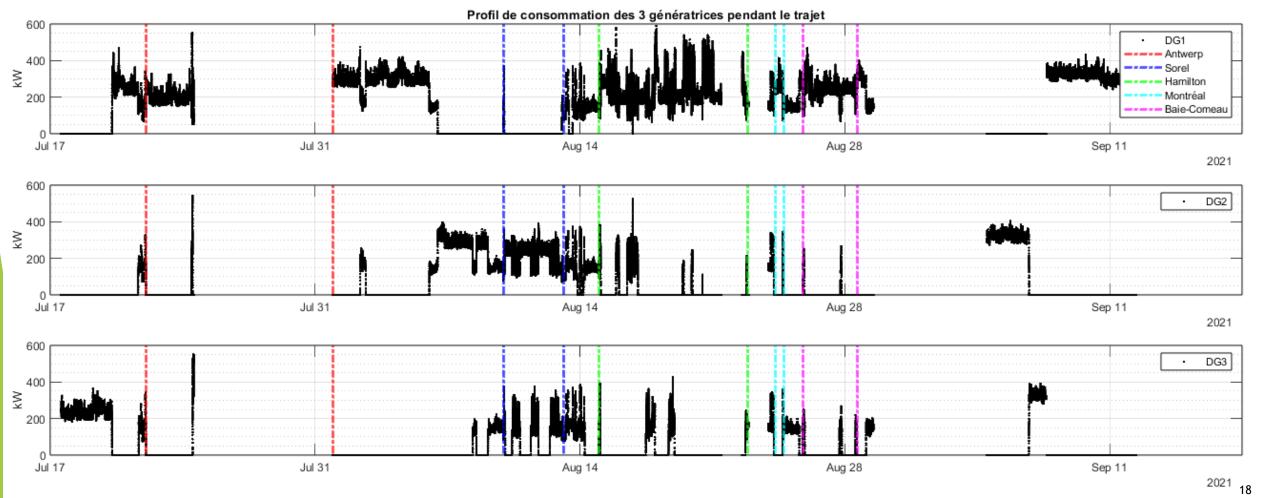


Analyse des scénarios

Scénarios d'analyse - Trajet

L'étude des technologies se fait selon le trajet suivant:

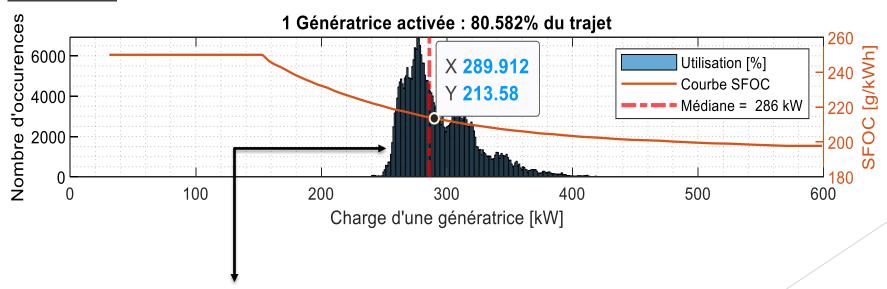
Antwerp (Belgique) ---- Sorel ---- Hamilton ---- Montréal ---- Baie-Comeau



Scénarios d'analyse - Technologies

- ▶ 1. Trajet de <u>base</u>
 - Établir un étalon de comparaison avec les données de Fednav.
- 2. Trajet avec <u>Shaft Generator</u>
 - Investiguer l'effet du Shaft Generator sur la consommation de diesel.
- ▶ 3. Trajet avec <u>Shaft Generator + Batterie</u> (FUTUR S8)
 - On remplace une génératrice pour mettre un système de batterie. L'énergie en surplus est stockée et utilisée à port.
- ▶ 4. Trajet avec <u>Shaft Generator + Batterie + Panneaux Solaires</u> (FUTUR S8)
 - o Toutes les technologies ensembles pour voir l'effet maximum sur la consommation de diesel.

Analyse - Méthodologie


Données fournies par FEDNAV

Analyse - Méthodologie

- On cherche à estimer la consommation totale en carburant de ces génératrices.
- On distribue donc toutes les données des profils de consommation des génératrices selon leur charge à chaque instant.
- On compare ensuite avec la courbe d'efficacité de consommation des génératrices.

EXEMPLE:

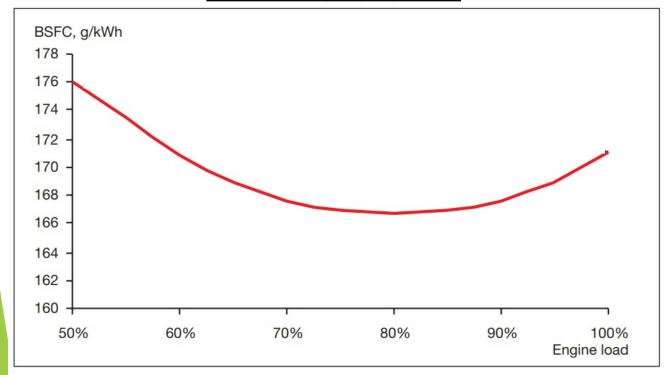
 $m [g] = \widetilde{SFOC} [g/kWh] \cdot E [kWh] = 214 [g/kWh] \cdot 50.5 \times 10^3 [kWh] = 1.08 \times 10^7 [g]$

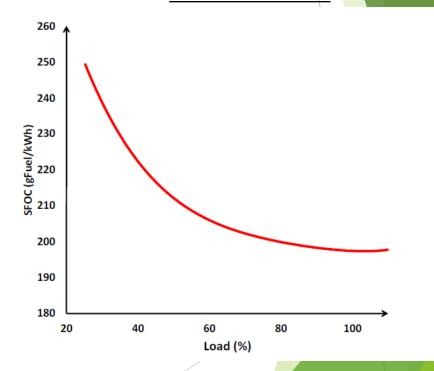
Analyse - Scénario #1 (Étalon)

À port	Carburant consommé pour services auxiliaire (g)	
Sorel	5.16×10^6	
Hamilton	1.05×10^{7}	
Montréal	6.96×10^5	
Baie-Commeau	3.99×10^{6}	

En déplacement	Carburant consommé pour services auxiliaire (g)		
Antwerp - Sorel	1.39×10^{7}		
Sorel - Hamilton	3.81×10^{6}		
Hamilton - Montréal	1.66×10^6		
Montréal - Baie	1.66×10^6		

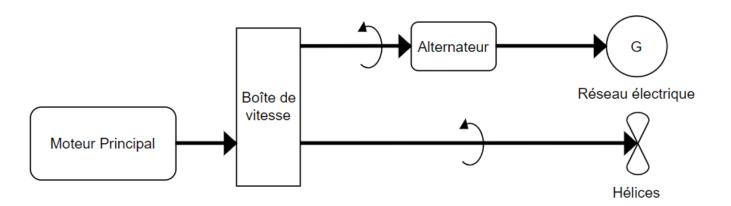
Note: L'empreinte en [g. CO₂] équivalent sera


déterminée à la S8

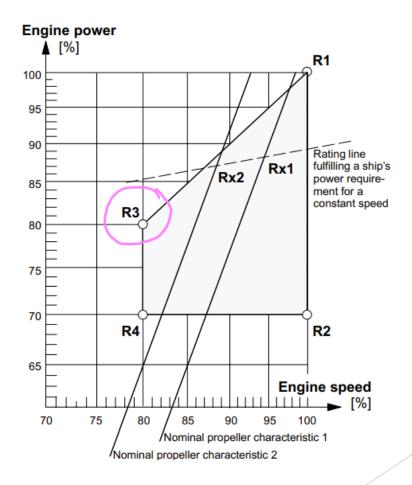

Shaft generator - Avantage

Le moteur à une efficacité de consommation supérieure aux génératrices.

Moteur Principal (Propulsion)



Génératrice Diesel


Shaft generator: Fonctionnement Power take out (PTO)

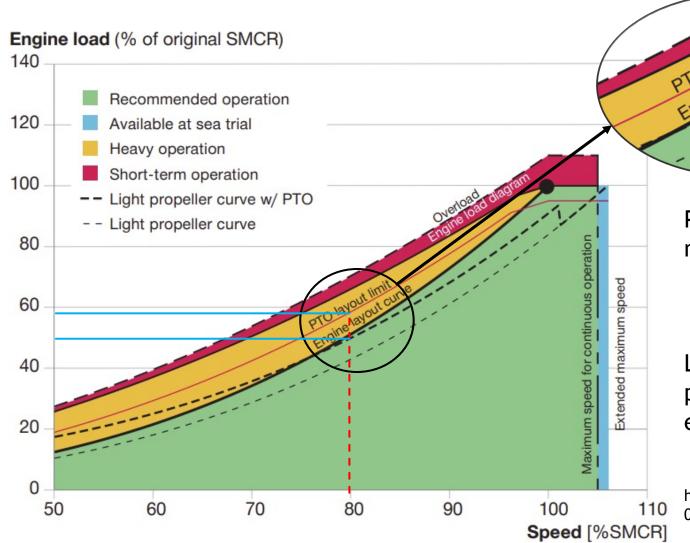
- Fonctionne entre 63-102% de la Vitesse nominale;
- Bon pour l'EEDI (Energy efficient design index).

Shaft generator: PTO layout limit

- Opération dans la région 3
- Environ [80%,80%]
- Correspond à 92.8 RPM dans notre cas

Shaft generator: PTO layout limit

▶ Dans notre cas, nous utilisons 80% de la vitesse et de la puissance


Table 2		
RPM [% SMCR]	PTO layout limit [% SMCR]	
60 - 96.2	100 × (rel. rpm [%] / 100%) ^{2.4}	
96.2 - 100	95 × (rel. rpm [%] / 100%)	
>100	95	

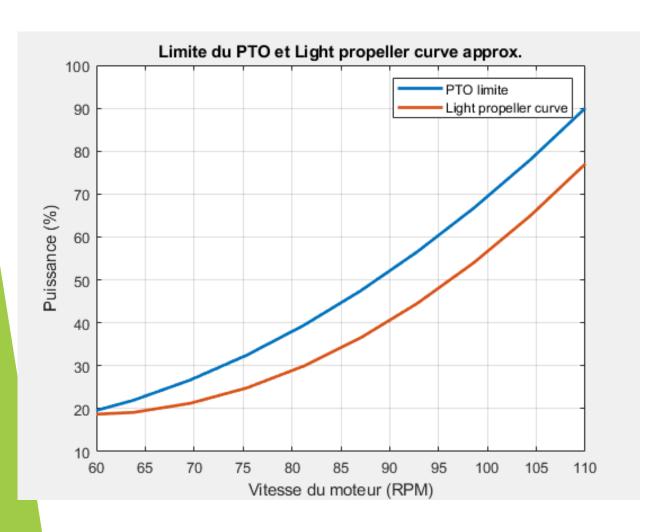
$$PTO_{layout,lim} = 100 \cdot \left(\frac{rel.rpm[\%]}{100\%}\right)^{2.4}$$

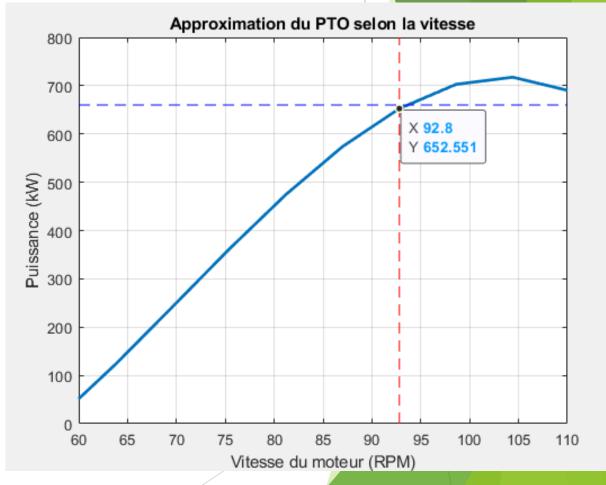
$$PTO_{layout,lim} = 100 \cdot \left(\frac{80\%}{100\%}\right)^{2.4} = 58,53\%$$

Shaft generator: PTO

Pour le vraquier visité, la puissance maximale est de 7000kW :

$$PTO = 9,53\%(7000kW) = 667,1kW$$


58,53%


PTO = 9,53%

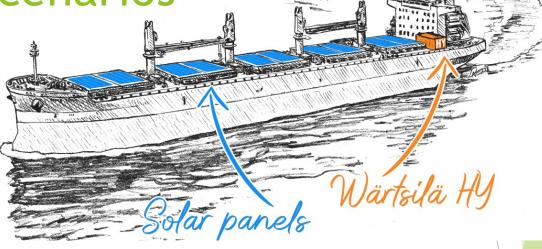
La limite de vitesse est donc à 9,53% de la puissance maximale, ce qui correspond à environ 50% de la vitesse.

https://www.man-es.com/docs/default-source/marine/tools/5510-0003-03ppr.pdf?sfvrsn=b570e4e5_14

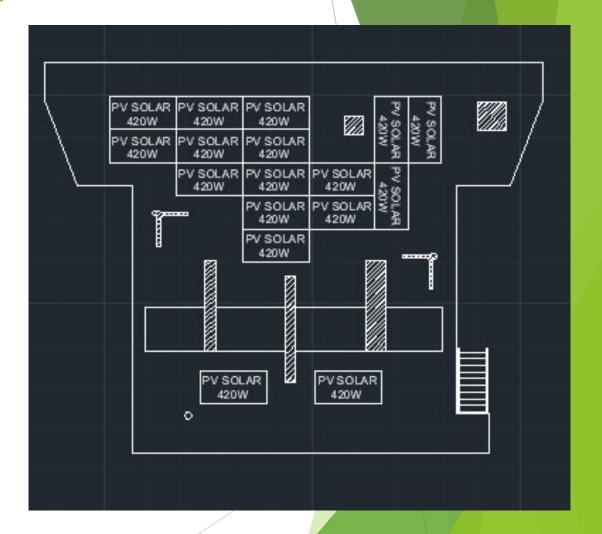
Shaft generator: Simulations

Shaft generator : Gain d'efficacité en mer

En déplacemen t(2 semaines)	Carburant consommé Scénario #1 (sans shaft)(g)	Carburant consommé Scénario #2 (avec shaft)(g)	Carburant sauvé (g)	Coût sauvé en \$/kWh (CAD)
Antwerp - Sorel	1.39×10 ⁷	1.11×10 ⁷	2.8×10 ⁶	0.09
Sorel - Hamilton	3.81×10^6	3.33×10^6	4.8×10 ⁵	0.06
Hamilton - Montréal	1.66×10 ⁶	1.33×10 ⁶	3.3×10 ⁵	0.10
Montréal - Baie	1.66×10 ⁶	1.33×10 ⁶	3.3×10^{5}	0.10
-	-	Total	3.94×10^6	0.09


Shaft generator: Conclusion

- Peut être considéré comme une génératrice;
- Améliore l'efficacité énergétique globale;
- Conception simple et technologie connue (alternateur);
- ► Flexibilité opérationnelle (RPM relativement variable);


Panneaux solaires - Scénarios

- Scénario 1 : Minimaliste
 - ▶ Le toit du pont.
- Scénario 2 : Réaliste
 - ▶ Le toit du pont.
 - Avec un conteneur sur le panneau d'écoutille (hatch cover) #6
- Scénario 3 : Optimale
 - ► Le toit du pont
 - Avec un conteneur sur chaque panneau d'écoutille

Panneaux solaires - Toit du pont

- Environ 17 panneaux solaires.
- Les panneaux solaires « trackers » ont été rejeté :
 - Prends plus de places que des panneaux solaires fixes.
 - Le sel marin de l'eau peut endommager les mécaniques du tracker.

Panneaux solaires - Conteneur Solaire

- ▶ Pour le scénario 2 : surface disponible de 265,51 m²
 - ► 144 panneaux = 60,48 kW
- ▶ Pour le scénario 3 : surface disponible de 1717,08 m²
 - ▶ 951 panneaux = 399,42 kW

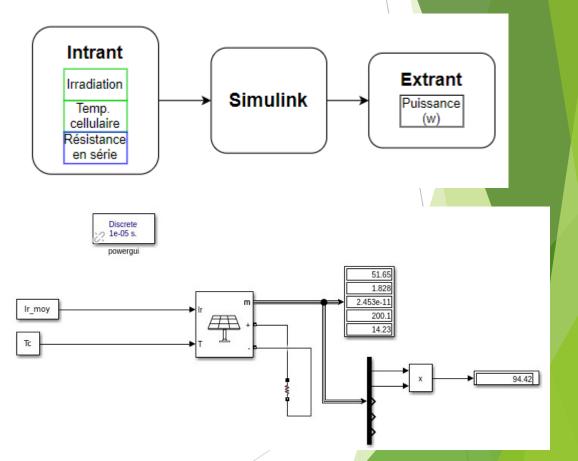
Scénario 2 Scénario 3

Panneaux solaires - Méthodologie

- Simulation en 4 étapes :
 - 1. Recherche de données météorologiques sur Internet.
 - 2. Simulation Matlab
 - > 3. Simulation Simulink
 - 4. Traitement données sur Excel
- 1. Recherche de données météorologiques sur Internet.
 - Déterminer des points de latitude du trajet
 - ▶ Trouver la température ambiante en fonction de la latitude

Panneaux solaires - Méthodologie (Suite)

- 2. Simulation Matlab
 - Intrant :
 - Les données météorologiques
 - ► Le mois du trajet
 - ▶ Le nombre de panneaux.
 - Les données du PV simulés : Tension en circuit ouvert (Voc) et Courant en court-circuit (Isc)
 - Extrant :
 - ▶ La radiation solaire(w/m²)
 - ▶ Le nombre d'heure de radiation par jours
 - ► La température cellulaire du panneaux solaires (°C)
 - ightharpoonup La résistance en série pour la simulation SIMULINK (Ω)



Cacul résistance en série

$$V_{maxPV} = V_{oc} * nb_{PVs\acute{e}rie}$$
 $I_{maxPV} = I_{sc} * nb_{PVparall\`{e}le}$
 $R = \frac{V_{maxPV}}{I_{maxPV}}$

Panneaux solaires - Méthodologie (suite)

- > 3. Simulink
 - Intrant
 - ► La radiation solaire (w/m2)
 - ► La température cellulaire du panneaux solaires (°C)
 - \blacktriangleright La résistance en série pour la simulation SIMULINK (Ω)
 - Extrant
 - ► La puissance électrique (w)
 - Simulation pour 1 panneau solaire
 - Modèle de panneau considéré non important
 - On a juste besoin de la puissance désirée
 - ► Le reste n'est pas important pour de la préconception
 - ▶ Vérifier par un ingénieur électrique pour nos besoins

Panneaux solaires - Méthodologie (suite)

- 4. Traitement des données sur Excel
 - Raison utilisation :
 - ▶ Beaucoup de scénarios à simuler en fonction de l'année (plus rapide sur Excel)
 - ► Agis comme banque de données à la suite des calculs
 - Banque de données:
 - ▶ Résultats en mer et sur quai en fonction des mois.
 - Données météorologiques.
 - Données durées du trajet du Federal Caribou.
 - ► Calcul:
 - ► Transformer la puissance d'un panneau en kWh de plusieurs panneaux
 - ► T = temps (heure); D = durée (jours); P = Puissance 1 PV (w); nb = nombre

 $Production(kWh) = P * nb_{PV} * T_{radiation} * D_{trajet}$

Panneaux solaires - Résultat simulation

- Simulation en mer du vraquier
- Trajet Federal Caribou
- Pendant le mois d'août
- Grosseur approx. de la batterie :
 - ▶ 1,65 MWh à 2,5 MWh

Trajet	Nombre de panneaux	Production électricité (kWh)
Antwerp (Belgique) -> Sorel	17	586,50
Sorel -> Hamilton	17	116,80
Hamilton -> Montréal	17	84,36
Montréal -> Baie-Comeau	17	63,19
Antwerp (Belgique) -> Sorel	161	5390,39
Sorel -> Hamilton	161	1102,41
Hamilton -> Montréal	161	796,19
Montréal -> Baie-Comeau	161	596,43
Antwerp (Belgique) -> Sorel	968	25 169,66
Sorel -> Hamilton	968	4 962,40
Hamilton -> Montréal	968	3 580,97
Montréal -> Baie-Comeau	968	2 730,64

Stockage de l'énergie

Dimensionnement du stockage

	Schneider Electric	EVLO
Puissance	250 kW, 375 kW et 500 kW	500 kW, 1 MW et 1,5 kW
Énergie	1.72 MWh max	1,65 MWh, 2 MWh ou 2,5 MWh
Dimensions	6,058m x 2,438m x 2,896m	6,1m x 2,44m x 2,9m
Durée	2h ou 4h	1 à 4h

Scénarios limites

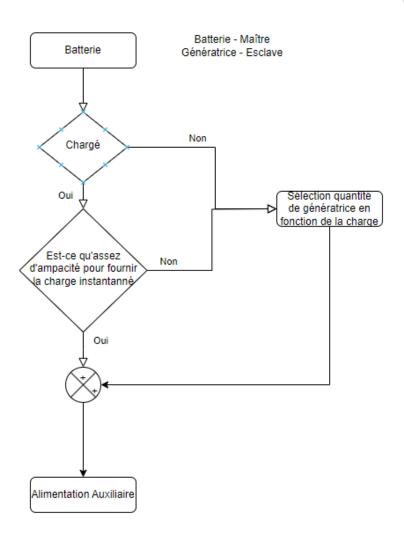

Trajet	Production électricité des panneaux solaires (kWh)	Production électricité du shaft generator (kWh)	Total Production (kWh)	Port	Énergie consommée à quai (kWh)
Antwerp (Belgique) -> Sorel	25 169,66	67 024	92 193,66	Sorel	22 147
Sorel -> Hamilton	4 962,40	5 729,7	10 692,1	Hamilton	45 116
Hamilton -> Montréal	3 580,97	5 529,7	9 110,67	Montréal	3 061,3
Montréal -> Baie- Comeau	2 730,64	5 730,8	8 461,44	Baie-Comeau	17 615

Schéma fonctionnement utilisation de l'énergie Est-ce que la batterie est chargé? pour recharger la batterie? S/G PV S/G PΥ PV Augmentation Production de *Production **Production *Production *Production production de base prioritaire restante Batterie Système auxiliaire Batterie Système auxiliaire Système auxiliaire * La production d'électricitié par les panneaux solaires varient en fonction de la météo. ** La production restante varie en fonction de la production solaire. Dans le cas où les

panneaux solaires ne produisent pas d'électricité, le "Shaft generator" va produire toute la charge.

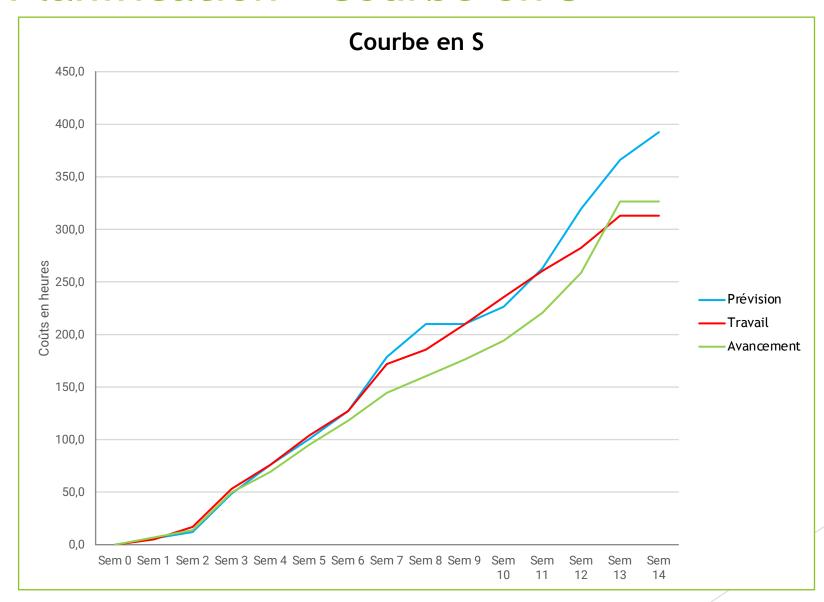
Fonctionnement déchargement de la batterie

La comparaison des rendements et des efficacités de différents scenarios de décharge reste à être effectuer (Atténuation des pics de demandes, décharge constance, etc)

Gestion du projet

Responsabilité des membres

- Christopher Allison
 - Stockage d'énergie, Soutien panneaux solaires
- Alexandre Baran
 - Analyse Scénarios, Soutien technique
- Éric Blanchard
 - ► Shaft Generator, Gestionnaire de projet
- Alexandre Côté
 - Soutien technique, Chef d'équipe
- Steven Clements
 - ► Shaft Generator, Soutien technique
- Benjamin Lessard
 - ▶ Panneaux Solaires, Gestionnaire de projet


Planification - Mode de gestion

- Mode de gestion Classique
 - ▶ Cela nous permet de ne pas trop diverger dans le projet.
 - ▶ Notre objectif reste toujours le même, seul le contenu change (technologies)
- Outils de gestion
 - Courbe en S
 - ► Tableau advancement détaillé
 - ▶ Diagramme de Gantt
 - ► Tableau de budget

Planification - Avancement S7

Sections	Objectifs S7	Avancement
e e	Gestion projet	100%
Gestion/Livrable	Rencontres techniques	100%
Ĺį	Réunions d'équipes	100%
ou/	Audit d'équipe 1	100%
esti	Audit d'équipe 2	100%
Ğ	RCP2	100%
	Analyse spécifications et contraintes	100%
	Choix de nos systèmes de production	100%
che	Recherche et analyse panneaux solaires	100%
Analyse et recherche	Puissance des panneaux solaires	100%
ect	Puissance des conteneur solaire	100%
et 1	Espace disponible pour les panneaux	100%
Se	Recherche et analyse Shaft Generator	100%
aly	Puissance du Shaft Generator	100%
An	Recherche et analyse système hybride-série	100%
	Analyse des moteurs	100%
	Consommation	100%
	Simulations	100%
_	Conception Matlab/simulink (Panneaux solaires)	100%
tio	Conception Matlab/simulink (Shaft Generator)	100%
Simulation	Conception Matlab/simulink (Vraquier)	100%
Ë	Intégration des systèmes	55%
0,	Simulation des différents scénarios	60%
	Bilan énergétique des différents systèmes	50%
	Evaluation/Bilan du micro-réseau	10%
Bilan	Evaluation/Bilan de consommation de CO2	0%
ш	Estimation/Évalutation des coûts du mirco-réseau	20%
	Avancement Total	90%

Planification - Courbe en S

Diagramme de Gantt - S8

Diagramn	ne de Gantt										
No.	Activité	Antécédent									
			Sem 1	Sem 2	Sem 3	Sem 4	Sem 5	Sem 6	Sem 7	Sem 8	Sem 9
1	Simulation Matlab/Simulink										
1.1	Modélisation coût économique des différents systèmes	Aucun									
1.2	Modélisation batterie au port	Aucun									
1.3	Simulation utilisation batterie au port	1.2									
1.4	Intégration des simulations batterie, S/G, PVs et profil consommation	1.2, 1.3									
1.5	Simulations Trajet Federal Caribou (voir profil action)	1.4									
1.6	Simulations Économique du micro réseau	1.5									
1.7	Refaire étape 1.5 et 1.6 avec un nouveau profil de trajet	1.6									
2	Évaluation et analyse des résultats										
2.1	Analyse de l'utilisation de la batterie	Aucun									
2.2	Analyse fonctionnement Micro Réseau	2.1									
2.3	Analyse résultat Simulation (Bilan énergétique)	2.1									
2.4	Analyse économique de la simulation	2.1									
2.5	Comparaison Micro Réseau vs Gen. Diesel	2.1									
2.6	Refaire étape 2.3 , 2.4 et 2.5 avec nouveau profil de trajet	2.3, 2.4, 2.5									
3	Revue de littérature										
3.1	Recherche structure sur Revue de littérature	Aucun									
3.2	Mise en plan de la revue	3.1									
3.3	Premier jet d'écriture	2.6									
3.4	Révision de la revue	3.3									
3.5	Source bibliographique	3.4									
3.6	Correction de la syntaxe, langue, etc	3.5									
3.7	Mise au propre de la revue	3.6									
4	Gestion et rapport										
4.1	Planification de la courbe en S	Aucun									
4.2	Révision du diagram de gantt	4.1									
4.3	Article de vulgarisation scientifique	Aucun									
4.4	Audit de mi-session	Aucun									
4.5	Présentation MégaGénial	Aucun									
4.6	Audit de fin de session	Aucun									
4.7	RPC1/2	Aucun									
4.8	Suivis										
4.8.1	Suivi de heures	Aucun									
4.8.2	Suivi du budget	Aucun									
4.8.3	Suivi des échéanciers	Aucun									

Estimer les coûts du projet

Туре	Description	Coût en \$ par unité	Quantité / nombre d'heure	Coût total en \$
Achat	Achat license Matlab.	120	6	720
Dépense	Essence (0,5\$/km)	0,5	60	30
Salaire	Coût horaire du projet	130	405	52 650
			Total	53 400

Retro-Action S7

- Positif:
 - ▶ On a bien définit les technologies du micro réseau .
 - ▶ On a un plan de gestion pour la prochaine session.
- Négatif :
 - ▶ En retard sur notre objectif S7 : Faire une simulation pour le trajet des Grand-Lacs.
- Point critique :
 - Finir notre simulation en début de session 8.
- Recommandation pour la prochaine session :
 - ▶ Commencer la session en force pour rattraper notre retard.
 - Suivre notre planification afin d'être dans les temps pour les livrables.